Comparison of flex rigid board ロージョです。 and BtoB (connector connection)

What is flex rigid board?

Rigid board - Connector - Rigid board (B to B) alternative structure

-A fusion of a rigid board and a flexible board. (FR-4 PP is laminated on the flexible core layer)

-Because it is connected by a flexible cable, there is no need to connect with a connector. (Flex rigid board it self can be B to B structure)

-Because the rigid layer is laminated on the flexible core No need to insert or remove, increasing the degree of freedom in wiring design.

-Examples of use: Cameras (Automotive, industrial machines, digital cameras, etc.), Healthcare, wearable, various sensors (industrial machines, etc.).

Comparison of flex rigid board Based and BtoB (connector connection)

Comparison of flex rigid board and connector

	Price	Pattern freedom	Minimization	Built-in process	Quality	Electrical characteristics	Total cost
Flex rigid board	×	0	0	0	0	0	0
Connector	0	×	×	×	×	×	×

Flex rigid board	Connector				
Advantage					
	 △Simplification of the parts themselves (Simplification of board design) 				
△Product miniaturization (Board miniaturization + connector Z direction is also reduced)	riangle The price of part is low				
△Process reduction (Board-Connector-Board connection not required)	△Easy to remove				
Prevention of momentary interruption (Because there is no connection, there is no concern it will come off)	△Each part can be replaced (Board and cable can be replaced)				
△Electrical characteristics (Since there is no connection, transmission loss is reduced)					
riangleEasy to customize the connector function					
Disadvantage					
▼Price increase thee board it self	ulletIncrease in the number of parts (larger PCB)				
✓As it is an integrated type, it cannot be removed	ullet There is a possibility of momentary interruption due to vibration				
	\bullet Increased number of connections and increased transmission loss				
	▼Selection mainly for existed products				

Comparison of flex rigid board Comparison of flex rigid board

Case study: M2M sensor

Reasons for adopting flex rigid board

DAISHO 🙏 DENSHI

Many advantage!!

- -Prevention of momentary interruption
- -Miniaturization
- -Storage in the housing
- -Reduction of process

フレックスリジッド基板とは…

リジッド基板-コネクタ-リジッド基板 (BtoB)の 代替構造体

*リジッド基板とフレキ基板の融合体。 (フレキのコア層にFR-4のPPを積層)

*フレキにより繋がっている為、コネクタによる接続不要。 (フレックスリジッド基板単体でBtoBの構造)

*フレキコアにリジッド層を積層する為、 抜き差し不要で配線の自由度UP。

*採用例:カメラ(車載、産業機械、デジカメ等)、 医療、ウェアラブル、各種センサ(産機等)。

フレックスリジッド基板とBtoB(コネクタ接続)の比較

フレックスリジッド基板とコネクタの比較

	部品価格	基板配線 自由度	製品 小型化	組み込み 工数	品質	電気特性	トータル コスト
フレックス リジッド基板	×	0	0	0	0	0	0
コネクタ	0	×	×	×	×	×	×

フレックスリジッド基板 レート 21mm	コネクタ			
メリット				
△基板の小型化 (コネクタのスペースが不要)	△部品自体の簡易化 (基板設計の簡易化)			
△製品の小型化 (基板小型化+コネクタ分のZ方向も縮小)	△各部品単体での価格が安価			
△工数削減 (基板-コネクタ-基板の接続不要)	△取り外しが容易			
△瞬断防止 (接続部がない為、抜ける懸念なし)	△各部品の取り換えが可能 (基板、ケーブルの交換可)			
△電気特性 (接続部がない為、伝送ロス低減)				
△コネクタ機能部のカスタム化が容易				
デメリット				
▼基板単体の価格アップ	▼部品点数の増加(基板大型化)			
▼一体型の為、取り外し不可	▼振動による瞬断の可能性あり			
	▼接続部が多くなり、伝送ロス増			
	▼基本的に既製品を主体とした選択			

DAISHO 🙏 DENSHI

採用事例:M2Mセンサー

